
. .

. /- . .

; PI.JT1N / >
.:. ·:.::,· ... :>:.; • ".::.·:. ' ..

THIS DOCUMENT HAS BEEN REPRINTED BY MITRE'S
MICROFICHE BLOW-BACK PROCESSES.
ROOM 1D-120, X4672.

ABSTRACT

A Trusted Computing Base (TCB) is the totality uf access control
mechanisms for an operating system. A TCB should provide both a
basic protection environment and the additional user services required
for a trustworthy turnkey system. The basic protection environment
is equivalent to that provided by a security kernel; the user services
are analogous to the facilities provided by trusted processes in
kernel-based systems. This report documents the performance, design,
and development requirements for a TCB for a general-purpose operating
system,

The information in this report is made available to stimulate
technical discussion among industry and government personnel. The
views and conclusions contained in this paper are those of the author
and should not be interpreted as necessarily representing tht
official policies either expressed or implied of the Department of
Defense or United States government.

This work was supported under Contract Number Fl9628-80-C-0001
as part of the DoD Computer Security Initiative Program.

iii

Section

1

2

3

4

TABLE OF CONTENTS

SCOPE

IDENTIFICATION

DOCUMENT OUTLINE

APPLICABLE DOCUMENTS

GOVERNMENT DOCUMENTS

Directives, Manuals and Standards

Reports

GENERAL REQUIREMENTS

SYSTEM DEFINITION

PROTECTION POLICY

REFERENCE MONITOR REQUIREMENTS

Completeness

Self-Protection

Verifiability

PERFORMANCE REQUIREMENTS

DETAILED REQUIREMENTS

SOFTWARE INTERFACE FUNCTIONS

Processes

Input/Output

Storage Objects

V

Page

1

1

2

3

3

3

3

6

6

7

7

8

10

10

14

15

15

15

17

18

DISTRIBUTION LIST

TABLE OF CONTENTS (Concluded)

USER INTERFACE FUNCTIONS

User Services

Operations /Maintenance·

Administration

vi

20

20

21

23

25

1.1 IDENTIFICATION

SECTION 1

SCOPE

In any computer operating system that supports multiprograming and
resource sharing, certain mechanisms can usually be identified as
attempting to provide protection among users against unauthorized
access to computer data. However. experience has shown that no
matter how well-intentioned the developers, traditional methods of
software design and production have failed to provide systems with
adequate, verifiably correct protection mechanisms. We define a
trusted computing base {TCB) to be the totality of access control
mechanisms for an operating system. A TCB should provide both a
basic protection environment and the additional user services
required for a trustworthy turnkey system. The basic protection1 environment is equivalent to that provided by a security kernel;
the user services are analogous to the facilities provided by
trusted processes in kernel-based systems. 2 This report documents
the performance, design, and development requirements for a TCB for
a general-purpose operating system.

In this report. there will be no attempt to specify how any
particular aspect of a TCB must be impl~mented. Studies of
present-day computer architectures [Smith 75, Tangney 78] indicate
that in the neat term a sj_gnificant amount of software will be
needed for protection regardless of any support provided by the
underlying hardware. In future computer architectures, more of the
TCB functions may be implemented in hardware or firmware. Examples
of specific hardware or software implementationa are given merely as
illul?trations, and are not meant to be requirements.

1A security kernel is a verifiable hardware/software mechanism that
mediates access to information in a computer system. See [ESD 74],
[Popek et al. 77], [KSOS 78], and [Schaefer et al. 77J.

2Trusted processes are designed to provide services that could be
incorporated in the kernel but are kept separate to simplify
verification of both kernel and trusted processes. Trusted
processes also have been referred to as "privileged,"
"responsible," "semi-trusted", and "non-kernel security-related
(NKSR)" in various implementations~

This specification is limited to computer hardware and software
protEict,icn mechanisms; not covered are the administrative, physical,
personnel, commun:lcations, and other security measures that
complement the internal computer security controls. For more
information in those areas, see [DoD 5200.28], that describes the
procedures for the Di->partment of Defense.

1.2 DOCUMENT OUTLINE

The specification is organized in three additional parts. Section 2
lists the references. Section 3 contains the general design
requirements for a trusted computing base. Detailed design
requirements are found in section 4.

2

SECTION 2

APPLICABLE DOCUMENTS

The following documents form a part of this specification to the
extent specified in this report. In the event of a conflict between
the referenced documents and the contents of this specification,
this specification shall be considered a superseding requirement.

2.1 GOVERNMENT DOCUMENTS

2.1.1 Directives, Manuals and Standards

a. Department of Defense Regulation 5200.1-R, "Information Security
Program Regulation," December 1978.

b. Department of Defense Directive 5200.28, "Security Requirements for
Automatic Data Processing (ADP) Systems," December 18. 1972
(including Change 2, April 29, 1978).

c. Departm,mt of Defense Manual 5200.28-M, 11 ADP Security Manual,"
January 1973 (including Change 1, June 25, 1979).

d. MIL-STD-483

e. MIL-STD-490

2. 1 . 2 ~Gports

Configuration Management

Specification Practices

a. [Anderson 72] Anderson, J.P., "Computer Security Technology
Planning Study," ESD-TR-73-51\ Volume I, James P. Anderson & Co.,
Fort Washington, Pennsylvania (October 1972) . .
b. [Bell and LaPadula 73] Bell, D, E. and L. J. LaPadula, "Secure
Computer Systems," ESD-TR-73-278, Volume I-III, The MITRE
Corporation, Bedford, Ma. (November 1973 - June 1974).

c. [Biba 75] Biba, K. J., "Integrity Considerations for Secure
Computer Systems," ESD-TR-76-372, The MITRE Corporation, Bedford Ma.
(June 1975).

3

d. [ESD 197 4] ''Computer Security Devel9pm<;ints Summary,'' MCI-75-1 ,
Electronics Systems Division (AFSC), L. G. Hanscom Field, Bedford,
Ma., December 1974.

e. [Furtek 78] Furtek, Frederick C, "A Validation Technique for
Computer Security Based on the Theory of Constraints,'' ESD
TR-78-182, The MITRE Corporation, Bedford, Ma. (December 1978).

f. [Good 78] Good, Donald, I., R. M. Cohen, C. G. Hock, L. W.
Hunter, D. F. Hare, Report on the Language Gypsy: Version 2.0,
ICSCA-CMP-10, The University of Texas at Austin, (September 1978).

g. (KSOS 78] KSOS Computer System Specification (Type A) , WDL
TR-7808 Revision 1, Ford Aerospace Communications Corporation, Palo
Alto, Ca., (July 1978).

h. [Lampson 73] Lampson, Butler, 1nA Note on the Confinement
Problem," CACM, 1{) (October 17), 613-615,

i. [Lipner 75] tipner, Steven B., "A Comment on the Confinement
Problem,11 MTP--167 'i The MITRE Corporation, Bedford, Ma. (November
1975).

j. [Nibaldi 75] Nibaldi, G. H., "Proposed Technical Evaluation
Criteria for Trusted Computer Systems," M79-225, The MITRE
Corporation, Bedford, Ma., (25 October 1979).

k, [Popek et al. 78] Popek, Gerald J., Mark Kampe, Charles S.
Kline, Allen Stoughton, Michael Urban, Evelyn J. Walton, "UCLA Data
Secure IJNIX - A Securable Operating System: Software Architecture,"
UCLA-ENG-7854, IJCLA Computer Science Department, Los Angeles, ca.,
(August 1978) .

1. [Robinson et al. 77] Robinson, L., K. N. Levitt, P. G. Neumann,
and A. K. Saxena, "A Formal Methodology for the Design of Operating
System Software," in R. Y. Yeh (ed.), Current Trends in Programming
Methodolog_l, Vol. _!: Software Specification and Design, Prentice
Hall, Englewood Cliffs, NJ, 1977, pp. 61-110.

m. [Saltzer 75] Saltzer, Jerome H, "The Protection of Inforl!lation
in Computer Systems," Proceedings of tne IEEE, Vol. 63, No. 9
(September 1975).

n. [Schaefer et al. 77] Schaefer, Marvin, Barry Gold, Richard
Linde, t:Jnd John Scheid, "Program Confinement i.l KVM/370," ACM Annual
Conference Proceedings, October 16-19, 1977, Seattle, pp. 404-410.

4

o. [Smith 75] Smith, L. "Architectures for ~ecure Computing
Systems," ESD-TR-75-51, The MITRE Corporation, Bedford, Ma. (April
1975).

p. [Spec 78] AF Specification No. CP 0787796100D, Appendix 80:
"Multilevel Security Requirements" (31 March 1978).

q. [Tangney 78] Tangney, John D., "Minicomputer Architectures for
Effective Security Kernel Implementations," ESD-TR-78-170, The MITRE
Corporation, Bedford, Ma. (October 1978).

5

3.1 SYSTEM DEFINITION

SECTION 3

GENERAL REQUIREMENTS

A TCB is a hardware and software access control mechanism that
establishes a protection environment to control the sharing of
information in computer systems.3 A TCB is an implemantation of a
reference monitor, as defined in [Anderson 72], that controls when
and how data is accessed.

In general, a TCB must enforce a given protection policy describing
the conditions under which information and system resources can be
made available to the users of the system. Protection policies
address such problems as undesirable disclosure and destructive
modification of information in the system, and harm to the
functioning of the system resulting in the denial of service to
authorized users.

Proof that the TCB will indeed enforce the relevant protection
policy can only be provided through a formal. methodological
approach to TCB design and verification, an example of which is
discussed below. Because the TCB consists of all the security
related mechanisms, proof of its validity implies the remainder of
the system will perform correctly with respect to the policy.

Ideally, in an implementation, policy and mechanism can be kept
separate so as to make the protection mechanisms flexible and
amenable to different environments, e.g., military, banking, or
medical applications. The advantage here is that a change in or
reinterpretation of the required policy need not result in rewriting
or reverifying the TCB.

In the following sections, general requirements for TCB design and
verification are discussed.

3under hardware and software we include implementations of computer
architectures in firmware or microcode.

6

p

3.2 PROTECTION POLICY

The primary requirement on a TCB is that it support a well-defined
protection policy. The precise policy will be largely application
and organization dependent. Four specific protection policies are
listed below as examples around which TCBs may be designed. All are
fairly general purpose, and when used in combination, would satisfy
the needs of most applications, although they do not specifically
address the denial of service threat. The policies are ordered by
their concern either with the viewing of information--security
policies--or with information modification--integrity policies; and
by whether the ability to access information is externally
predetermined--mandatory policies--or controlled by the possessor of
the information--discretionary policies:

1. mandatory security (used by the Department of Defense--see
[DoD 5200.28]), to address the compromise of information
involving national security;

2. discretionary security (commo11ly found in general purpose
computer systems today);

3. mandatory integrity; and

~. discretionary integrity policy.

In each of these cases, "protection attributes" are associated with
the protectable entities, or "objects" (computer resources such as
files and peripheral devices that contain the data of interest), and
with the users of these entities (e.g., users, processes), referred
to as subjects. In particular, for mandatory security policy, the
attributes of subjects and objects will be referred to as "security
levels". These attributes are used by the TCB to determine what
accesses are valid. The nature of these attributes will depend on
the applicable protection policy.

See Nibaldi [Nibaldi 75] for a general discussion on policy. See
Biba [Biba 75] for a discussion of integrity.

3.3 REFERENCE MONITOR REQUIREMENTS

As stated above, a TCB is an implementation of a reference monitor.
The predominant criteria for a sound reference monitor
implementation are that it be

1. complete in its mediation of access to data and other
computer resources;

7

2. self-protecting, free from interference and spurious
modification; and

3. verifiable, constructed in a way that enables convincing
demonstration of its correctness and infallibility.

3.3,1 Completeness

The requirement that a TCB mediate every access to data in the
computer system is crucial. In particular, a TCB should mediate
access to itself--its code and private data--thereby supporting the
second criterion for self-protection. The implication is that on
every action by subjects on objects, the TCB is invoked, either
explicitly or implicitly, to determine the validity of the action
with respect to the protection policy, This includes:

1. unmistakably identifying the subjects and objects and their
protection attributes, and

2. making it impossible for the access checking to be
circumvented.

In essence, the TCB must establish an environment that will
simultaneously (a) partition the physical resources of the system
(e.g., cycles, memory, devices, files) into '~virtual" resources for
each subject, and (b) cause certain activities performed by the
subjects, such as referencing objects outside of their virtu~l
space, to require TCB intervention.

3.3.1.1 Subject/Object Identification. What are the subjects and
objects for a given system and how are they brought into the system
and assigned protection attr-ibutes? In the people/paper world,
people are clearly the subjects, In a computer, the process has
commonly been taken as a subject in security kernel-based systems,
and storage entities (e.g., records, files, and I/0 devices) are
usually considered the objects. 4 The precise breakdown for a given
system will depend on the application. Complete identification cf

4Note that a process might also behave as an object, for instance if
another process sends it mail (writes it). Likewise, an I/0 device
might be considered to sometimes at:t as a subject, if it can access
any area of memory in performing an operation. In any case, the
policy rules governing subject/object interaction must elways be
obeyed.

8

,. ..

subjects and objects within the computer system can only be assured
if their creation, name association, and protection attribute
assignment alway~ take place under TCB control, and no subsequent
manipulations on subjects and objects are allowed to change these
attri.butes without TCB involvement. Certain issues remain, such as
(a) how to associate individual users and the programs they run with
subjects; and (b) how to assoDiate all the entities that must be
accessed on the system (i.e., the computer resources) with objects.
?CB functions for this purpose are described in section 4, "Detailed
Requirements".

3,3,1.2 Access Checking. How are the subjects constrained to
invoke the TCB on every access to objects? Just as the TCB should
be responsible for generating and unmistakably labelling every
subject and object in the system, the TCB must also be the facility
for enabling subjects to manipulate objects, for instance by forcing
every fetch, store, or I/0 instruction executed by non-TCB software
to be "interpreted" by the TCB.

Hardware support for checking on memory accesses exists on several
machines, and has been found to be very efficient. This support has
taken the form of descriptor-based addressing: each process has a
virtual space consisting of segments of physic.al memory that appear
t.o the process to be connected. In fact, the segments may be
scattered all over memory, and the virtual space may have holes in
it where no segments are assigned, Whenever the process references
a location, the hardware converts the "virtual address" into the
name of a base register (holding the physical address of the start
of the segment, the length of the segments, and the modes of access
allowed on the segment), and an offset. The content of the base
register is called a descriptor. The hardware can then abort if the
form of reference (e.g., read, write) does not correspond to the
valid acoess modes, if the offset exceeds the size of the segment,
or if' no segment has been "mapped" to that address. The software
portion of the TCB need merely be responsible for setting up the
descriptor registers based on one-time checks as to the legality of
the mapping.

Access checking in I/0 has been aided by hardware features in a
variety of ways, In one line of computers, devices are manipulated
through the virtual memory mechanism: a process accesses a device
by referencing a virtual address that is subsequently changed by
hardware into the physical address of .the device, This form of I/0
is referred to as "mapped I/011 [Tangn~y 78 J .- Other methods of
checking I/0 are discussed in section 4.

9

3.3.2 Self-Protection

Following the principle of economy of mechanism [Saltzer 75], the
TCB ideally protects itself in the same way that it protects other
objects, so the discussion on the completeness property applies here
as well. In addition, not uncommonly many computer architectures
provide for multiple protection "domains" of varying privilege
(e.g., supervisor, user). Activities across domains are limited by
the hardware so that software in the the more privileged domains
might offect the operations in less privileged domains, but not
necessarily vice versa. Also, software not executing in a
privileged domain is restricted, again by the hardware, from using
certain instructions, e.g., manipulate-descriptor-registers, set
privilege-bit, halt, and start-I/a. Generally only TCB software
would run in the most privileged domain and rely on the hardware for
its protection. (Of course, part of the TCB might run outside of
that domain, e.g., as a trusted process.) Clearly, if in addition to
the TCB, non-TCB or untrusted software were allowed to run in the
privileged region, TCB controls could be subverted and the domain
mechanism would be useless.

3.3.3 Verifiability

The responsibility given to the TCB makes it imperative that
confidence in the controls it, provides be established. Naturally,
this applies to TCB hardware, software, and firmware. The following
discuss~0n considers only software verification.5 Minimizing the
complexity of TC8 software is a major factor in raisirig the
confidence level that can be assigned to the protection mechanisms
it provides. Consequ,3ntly, two genel'al design goals to follow after
identifying all security relevant operations for inclusion in the
TCB are (a) to exclude from the TCB software any operations not
strictly security-related so that one can focus attention on those
that are,6 and (b) to make as full use as possible of protection

5rechniques for verifying hardware correctness have tended to
emphasize exhaustive testing, and will no doubt continue to do so.
Even here, nowever, the trend is toward more formal techniques of
verification, similar to those being applied to software. One
approach is given in [Furtek 78]. IBM has done some work on
microcode verification.

6In order to enhance performance, non-security related software may
indeed be placed in the TCB, but this is discouraged.

10

features available in the hardware. Formal techniques of
verification, such as those discussed in the next section, are
promoted in TCB design to provide an acceptable methodology upon
which to base a decision as to the correctness of the design and of
the implementation.

3.3.3.1 Security Model. Any formal methodology for verifying the
correctneas of a TCB must start with the adoption of a mathematical
model of the desired protection policy. A model encompassing
mandatory security and to some extent the discretionary security and
integrity policies was developed by Bell and LaPadula [Bell and
LaPadula 73].7 There are five axioms of the model. The primary two
are the simple security condition and the *-property (read star
property). The simple security condition states that a subject
cannot observe an object unless the security level of the subject,
that is, the protection attributes, is greater than or equal to that
of the object. This axiom alone might be sufficient if not for the
threat of non"-TCB software either accidently or intentionally
copying information into objects at lower security levels. For this
reason, the *-property is included. The *-property states a subject
may only modify an object if the security level of the subject is
less than or equal LO the security level of the object.

The simple security condition and the *-property can be circumvented
within a computer system by not properly classifying the object
initially or by reclassifying the object arbitrarily. To prevent
this, the model includes two additional axioms: the activity axiom
guarantees that all objects have a well-defined security level known
to the TCB; the tranquility axiom requires the classifications of
objects are not changed.

The model also defines what is called a "trusted subject11 that may
be privileged to violate the protection policy in some ways where
the policy is too restrictive. For instance, part of the TCB might
be a 11 trusted process" that allows a user to change the security
level of information that should be declassified (e.g., has been
extracted from a classified document but is itself not classified).

7Biba has shown how mandatory integrity is the dual of security and,
consequently may be modeled similarly.

11

This action would normally be considered a tranquility or *-property
violation, depending on whether the object containing the
information had its security level changed or the information was
copied into an object at a lower security level.

3.3.3.2 Methodology. A verification methodology is depicted in
figure 1.8 In this technique, the correspondence between the
implementation (here shown as the machine code) and protection
policy is proven in three steps: (a) the properties of a
mathematical model of the protection policy are proven to be upheld
in a formal top level specification of the behavior of a given TCB
in terms of its input, output, and side effects; (b) the
implementation of the specifications in a verifiable programing
language9 is shown to faithfully correspond to the formal
specifications; and finally (c) the generated machine code is
demonstrated to correctly implement the programs. The model
describes the conditions under which the subjects in the system
access the objects. With this approach, it can be shown that the
machine code realizes the goals of the model, and as a result, that
the specified protection is provided.

Where trusted subjects are part of the system, a similar
correspondence proof starting with an additional model of the way in
which the trusted subject is allowed to violate thP. general model
becomes necessary. Clearly, the more extensive the duties of the
trusted subject, the more complex the model and proof.

8The Hierarchical Development Methodology, developed at SRI
International [Robinson et al. 77], is another fairly general
methodology for the design, verification, and implementation of
reliable software. It has been used for instance to show that
software meets certain performance requirements.

9The term "verifiable programing language" refers to languages such
as Pascal, Gypsyi Modula, and Euclid for which verification tools
either exist or are currently being planned. [Good 78]

12

Security
Model

I l I I
I I

l<-->l Formal l<-->l Verifiable l<-->I Machine
I Specifications! Programs Code
I

·-------

Figure 1. Correspondence Chain

3.3.3.3 Confinement Problems. The TCB is designed to "confine"
what a process can access in a computer system. The discussion
above centers around direct access to information. Other methods
exist to compromise information that are not always as easily
detected or corrected, Known as "indirect channels", they exist as
a side-effect of resource-sharing. This manner of passing
information may be divided into "storage" channels and "timing"
channels,10 Storage channels involve shared control variables that
can be influenced by a sender and read by a receiver, for instance
when the fact that the system disk is full is returned to a process
trying to create a file. Storage channels, however, can be detected
using verification techniques, Timing channels also involve the use
of resources, but here the exchange medium is time; these channels
are not easily detected through verification, An example of a
timing channel is where modulation of scheduling time can be used to
pass information.

In order to take advantage of indirect chaQnels, at least two
"colluding" processes are needed, one with direct access to the
information desired, and a second one to detect the modulations and
translate them into information that can be used by an unauthorized
recipient. Such a channel might be slowed by introducing noise, for
instance by varying the length of time certain operations take to
complete, but performance would be affected.

Storage channels are related to the visibility of control
information: data "about" information, for example, the names of

10
The terminology in this area in the literature is very confusing.

The definitions given here correspond to those used in [Schaefer et
al, 77). See [Lampson 73] and [Lipner 75] for another
interpretation,

13

files not themselves directly accessible, the length of an IPC
message to another user, the time an object was last modified, or
the access control list of a file, 11 Even the name of a newly
created object such as a file can be a channel if this name is
dependent on information about other files, e.g., if the name is
derived from an incremental counter, used only to generate new file
names. This type of channel can often be closed by making the data
about legitimate information as protected as the information itself.
However, this is not always desirable: for instance, in computer
networks, software concerned only with the transmission of messages,
not with their contents, might need to view message headers
containing message length, destination, etc.

Systems designers should be aware of confineMent problems and the
threats they pose. Formal techniques to at least identify and
determine the bandwidth of the channels, if not completely close
them, are certainly of value here. Ad hoc measures may be necessary
in their absence.

3,4 PERFORMANCE REQUIREMENTS

Since the functions of the TCB are interpretive in nature, they may
be slow to execute unless adequate support is provided in the
hardware. For this reason, in the examples of functions given
below, hardware implementations (including firmware/microcode), as
opposed to software, are stressed, with the idea that reasonable
performance is only accomplished when support for the protection
mechanisms exists in hardware. Certainly, software implementations
are not excluded, and due to the malleability of software, are
likely more susceptible to appreciable optimization,

11 rt is often the case that even the fact that an object with
certain protection attributes exists is information that must be
protected.

14

SECTION 4

DETAILED REQUIREMENTS

The kinds of functions that would be performed by a TCB are outlined
below. Those listed are general in nature: they are intended to
support both general-purpose operating systems and a variety of
dedicated applications that due to potential size and complexity,
could not easily be verified

The functions can be divided into two general areas: software
interface functions, operations invoked by programs, and user
interface functions, operations invoked directly by users. In terms
of a security kernel implem~ntation, the software interface
functions would for the most part be implemented by the kernel: the
user interface functions would likely be. carried out in trusted
processes.

4.1 SOFTWARE INTERFACE FUNCTIONS

The TCB acts very much like a primitive operating system. The
software interface functions are those system calls that user and
application programs running on top of the TCB in processes may
directly invoke. The software interface functions fall into three
cstegories: processes, input/output, and storage.

In the descriptions that follow, general input, output, and
processing requirements are stated. Output values to processes in
particular could cause confinement problems (i.e., serve as indirect
channels), by relating the status of control variables that are
affected by operations by other processes. Likely instances of this
are mentioned whereV't1r possible.

4. 'i , 1 Processes

Pro~esses are the primary active elements in the system, embodying
the notion of the subject in the mathematical model. (Processes
also behave as objects when communicating with each other.) By
definition, a process is "an address space, a point of execution,
and a unit of scheduling". More precisely, a process ~onaists of
code and data accessible as part of its address space; a program
location at which at any point during the life of the process the
address of the currently executing instruc"tion can be found; and
periodic access to the processor in order to continue. The role of

15

the TCB is to manage the individual address spaces by providing a
unique environment for each process, often called a "per-process
virtual space", and to equitably schedule the processor among the
processes. Also, since many applications require cooperating
processes, an inter-process communication (IPC) mechanism is
f'equired as part of the TCB.

4.1.1.1 Create Process. A create process function causes a new
per-process Virtual space to be e~tablished with specific program
code and an identified starting execution point. The identity of
the user causing the process to be created should be associated with
the process, and depending on the protection policy in force,
protection attributes should be assigned, such as a security level
at which the process should execute in the case of mandatory
security.

4.1.1.2 Delete Process. A delete process function causes a process
to be purged from the system, and its virtual space freed. The
process is no longer considered a valid subject or object. If one
process may delete another with different protection attributes, an
indirect channel may arise from returning the fact of the success or
failure of the operation to the requesting process. ,,

4.1.1.3 Swap Process. A swap process function allows a process to
become blocked and consequently enable others to run. A TCB
implementation may choose to regularly schedule other processes to
execute after some fixed "time-slice" has elapsed for the running
process. 12 In order to address a denial of service threat, this will
not be the only process blocking operation: certain I/0 operations
should cause the process initiating the operation to be suspended
until the operation completes.

For example, the hardware could support such an operation torough
mechanisms that effect fast process swaps with the corresponding
change. in address spaces. An exc1mple of such support is a single
"descriptor base" register that points to descriptors for a process'
address space, only modifiable from the privileged domain. The swap
would be executed in little more than the time required for a single
"move" operation.

As was mentioned above, the "scheduling" operation in itself may
contribute to a timing channel, that must be carefully monitored.

12 If a TCB supports time-slicing, a swap function may not be
necessary.

16

4.1.1.4 IPC Send. A process may send a message to another process
permitted to receive messages from it through an IPC send mechanism.
The TCB should be guided by the applicable protection policy in
determining whether the message should be sent, based on the
protection attributes of the sending and receiving process. The TCB
should also insure that messages are sent to the correct
destination.

An indirect channel may result from returning the success or
failure of "queuing" the message to the sending process, because the
returned value may indicate the existence of other messages for the
destination process, as well as the existence of the destination
process. This may be a problem particularly where processes with
different protection attributes are involved (even if the attributes
are sufficient for actually sending the message). If such a channel
is of concern, a better option might be to only return errors
involving the message itself (e.g., message too long, bad message
format). Clearly, there is a tradeoff here between utility and
security.

4.1.1.5 IPC Receive. A process may receive a message previously
sent to it through an IPC receive function. The TCB must insure
that in allowing a process to receive the message, the process does
not violate the applicable protection policy.

4.1.2 Input/Output

Depending on the sophistication of the TCB, I/0 0perations may range
from forcing the user to take care of low level control all the way
to hiding from the user all device dependencies, essentially by
presenting I/0 devices as simple storage objects, such as described
below. Where I/0 details cannot be entirely hidden from the user,
one could classify I/0 devices as devices that can only manipulate
data objects with a common protection attribute at one time (such as
a line printer), and those that can manage data objects representing
many different protection attributes simultaneously (such as disk
storage devices). These two categories can be even further broken
down into devices that can read or write any location in memory and
those that can only access specific areas. These categories present
special threats, but in all cases the completeness criteria must
apply, requiring that the TCB mediate the movement of data from one
place to another, that is, from one object to another. To resolve
this problem, all I/0 operations should be mediated by the TCB.

17

Some computer a!"'chitectures only allow software running in the most
privileged mode to execute instructions directing I/O. As a result,
if only the TCB can assume privileged mode, TCB mediation of I/O is
more easily implemented.

In the first category, if access to the device can be controlled
merely by restricting access to the memory object which the device
uses, the problem becomes how to properly assign the associated
memory to a user's process, and no special TCB I/O functions are
necessary. However, if special timing requi.rements must be met to
adequately complete an I/O operation, quick response times l!lay only
be possible by having the TCB service the device, in which case a
6pecial operation is still needed.

When the device can contain objects having different protection
attributes, the entire I/O operation will involve not only a memory
object, but also a particular object on the device having the
requisite protection attributes. TCB mediation in such a case is
discussed under "Storage Objects."

4.1,2.1 Access Device, The access device function is a directive
to the TCB to perform an I/O operation on a given device with
specified data. The operations performed will depend on the device:
terminals will require read and write operations at a minimum. The
TCB would determine if the protection attributes of the requesting
process allow it to reference the device in the manner requested.

This kind of operation will only be necessary when mapped I/O is not
possible,

4.1.2.2 Map Device, The map device operation makes the memory and
control associated with a device correspond to an area in the
process' address space. As in the case of the "access device"
function, a process must have protection attributes commensurate to
that of the information allowed on the device to successfully
execute this operation. This operation may not be possible if
mapped I/O is not available in the hardware.

4.1.2.3 Unmap Device. The unmap device frees a device mapped in
the address space of a process.

4,1.3 Storage Objects

The term "storage objects" refers to the various logical storage
areas into which data is read and written, that is, areas that are
recognized as objects by the TCB. Such objects may take the form of
logical files or merely recognizable units of a file such as a

18

fixed-length block. These objects may ultimately reside on a long
term storage device, or only exist during the lifetime of the
process, as requited. Where long-term devices have information with
varied protection attributes, as discuss~d in the previous section,
TCB mediation results in virtualizing the device into recognizable
objects each of which may take on ·different protection attributes.
The operations on storage objects include creation, dehltion, and
the direct access involved in reading and writing.

4.1.3.1 Create Object. The create object function allocates a new
storage object. Physical space may or may not be allocated, but if
so, the amount of space actually allocated may be a system default
value or specified at the time of creation.

As mentioned above, naming conventions for storage objects such as
files may open an undesirable indirect channel. If the names are
(unambiguously) user-defined or randomly generated by the TCB, the
channel can be reduced.

4.1.3.2 Delete Object. The delete object function removes an
object from the system and expunges the information and any space
associated with it. The TCB first must verify that the protection
attributes of the process and object allow the object to be deleted.
Indirect channels in this case are similar to those for "delete
process". The fact of the success or failure of the operation may
cause undesirable information leakage.

4.1.3.3 Fetch Object. The fetch object function makes any data
written in the object available to the calling process. The TCB
must determine first if the protection attributes of the object
allow it to be accessed by the process. This function may be
implemented primarily in hardware, by mapping the physical address
of the object into a virtual address of the caller, or in software
by copying the data in the object into a region of the caller's
address space,

4. 1 ,3. I.I Store Object. The store object function removes the object
from the active environment of the callirig process. If the object
is mapped into the caller's virtual spece, thia fuuction will
include an unmap.

4.1.3.5 Change Object Protection Attributes. A protection policy
may dictate that subjects may change some or all of the protection
attributes of objects they can access. Alternatively, only trusted
subjects might be allowed to change certain attributes, The TCB
should determine if such a change is permitted within the limits of
the protection policy.

19

. (l

l

4.2 USER INTERFACE FUNCTIONS

The TCB software interface functions address the operations
executable by arbitrary user or applications software. The user
interface functions, on the other hand, include those operations
that should be directly invokable-by users. By localizing the
security-critical functions in a TCB for verification, it becomes
unnecessary for the remaining software running in the system to be
verified before the system can be trusted to enforce a protection
policy. Most applications software should be able to run securely,
by merely taking advantage of TCB software interface facilities.13
When users need capabilities beyond thet normally provided to
general applications, such as the ability to change the owner of a
file object, direct contact with the TCB is required.

In kernel-based systems, the user interface functions are commonly
implemented as trusted processes. Moreover, these trusted processes
rely on the equivalent of the software interface functions for
support.

These functions fall into three categories: user services,
operations and maintenance, and administration.

4.2.1 user Services

Certain operations may be available to users as part of standard set
of functions a user may wish to perform. Three are of interest
here: authentication of the user to the system and of the system to
the user, modification of protection attributes, and special I/0.

4.2.1.1 Authentication. The act of "logging in", of identifying
oneself to the system and confirming that the system is r.eady to act
on the behalf of the requester, is critical to the protection
mechanisms, sirlce all operations and data accesses that subsequently
occur will be done in the name of this user. Consequently,

13Applications may enforce their own protection requirements in
addition to those of the TCB, e¾g., a data base management system
may require very small files be controlled, where the granularity
of the files is too small to be feasibly protected by the TCB. .In
such a case, the application would still ·rely on the basic
protection environment provided by the TCB.

20

identification and authentication mechanisms that play a part in
validating a user to the system should be carefully designed and
implemented as part of the TCB,

Likewise, the system must have some way of alerting the user when
the TCB is in command of terminal communications, rather than
untrusted software merely mimicking the TCB. For example, the TCB
might signal to the user in a way that non-TCB software could not,
or a special terminal button could be reserved for users to force
the attention of the TCB, to the exclusion of all other processes.

4.2.1.2 Access Modification. Access modification functions allow a
user to securely redefine the protection attributes of objects
he/she controls, particularly in the case of discretionary policy.
Also included here are operations that allow a user to select the
protection attributes to be assumed while using the system, where
the attributes may take on a range of values. For example, a user
with a security level of Top Secret, may choose temporarily to
operate as if Unclassified in order to update bowling soores.

Many factors must be considered in implementing such an operation,
particularly if implemented in a process, The user must have some
way of convincing himself that the object for which the protection
attributes are being changed is indeed what is intended. For
instance, the user might be allowed to view a file to confirm its
contents before changing its security level. Another issue involves
the synchronization problem resulting from other processes possibly
accessing the object at the instant the access modification is
attempted. The TCB should prevent such a change from occurring
unless the object were "locked", or temporarily made inaccessible to
other processes, until the operation was complete, and also access
to the other processes should be re-evaluated on completion.

4.2. 1.3 Special 1/Q.. I/0 functions not covered in the software
interface functions due to their specialized nature are:
(a) network communications, and (b) spooling, e.g. to a line printer
or mailer. The ramifications of both of these areas are too
extensive to adequately cover here. The reader is referred to [KSOS
78].

4.2.2 Operations/Maintenance

In the operations and maintenance category fall those functions that
would normally be performed by spe,::iial users, the system operators,
in running and maintaining the system. Exi:lmples of such operations
are system startup and shutdown, backup and restore of long-term
storage, system-wide diagnostics, and system generation.

21

4.2.2.1 Startup/Shutdown. The security model discussed above
assumes that in a TCB, an initial secure state is attained and that
subsequent operations on the system obey the protection policy and
do not affect the security of the system. This characteristic of a
TCB can be said to be true regardless of the protection policy and
security model employed. A "startup", or bootstrap, operation
addresses the initialization of the system and the establishment of
the protectio'O environment upon which subsequent opercitions are
based. The model itself, or the formal specifications of a specific
design, can address what the characteristics of all secure states
are, and hence the requirements for the initial secure state.
Consequently, programs that create this state can be well-defined.
Since it is the operator who must execute the necessary procedures
that initialize the system, TCB functions interfacing the operator
must be trusted to do what the operator specifies.

Shutdown procedures are equally crucial in that an arbitrary
suspension of system ac,ti vi ties could easily leave the system in an
incomplete state, making it difficult to resume securely (for
instance, if only half of an updated password file is moved back to
disk). One must, for instance, write all memory-resident tables out
to disk where necessary.

4.2.2.2 Backup/Restore. To allow for recovery from unpredictable
hardware failure, and consequently the arbitrary suspension
mentioned above, "checkpoints" may be taken of a given state of the
storage system, for instance, by copying all files from disk to some
other medium, such as magnetic tape. In the event of system
failure, the state of files at some earlier time can be recovered.
The backup function must operate on the system in a consistent
state, and accurately reflect that state; the restore function must
reliably rebuild from the last completely consistent record it has
of a secure state. Note that the backup system requires an
especially high level of trust since it stores protection attributes
as well as data.

4.2.2.3 Diagnostics. Diagnostics of both hardware and software
integrity can thwart potentially harmful situations. In particular~
hardware diagnostics attempt to signal when problems arise, or, when
something has already gone wrong, they try to aid the technician in
pinpointing where the problem is. Diagnostics written in software
typically access all areas of memory and devices, and consequently,
if run during normal operation of the rest of the system, require
tight TCB controls. If po$sible, they should be relegated to user
programs and limited to specific access spaces during the course of
their operation. However, in such a case it would be impossible to

22

test the security critical hardware, such as descriptor registers if
present. Such software, for on-line diagnosis, must be included in
the TCB, and limited to operator use.

4.2.2.4 System Generation. System generation deals with creating
the program modules in executable .form that can subsequently be
loaded during system startup. It is included here for completeness,
although there is no intention in this report to require that
editors, compilers, loaders, and so forth, be verified to correctly
produce the code that is later verified correct. Correct system
generation is an area that is clearly vulnerable, and procedures
must be made to ensure that the master source is not intentionally
corrupted.

4,2.3 Administration

The administration and overall management of a system both in terms
of daily operations and security operations may be relegated to a
user, or users, other than the system operator. Functions in
support of system administration include but are not limited to
updating data bases of users and their valid protection attributes;
and audit and surveillance of protection violations;

4.2,3.1 User Data Base Updates, A typical user data base would
contain at a minimum the names of valid users, their authentication
data (e.g., password, voice print, fingerprints), and information
relating to the protection attributes each user may take on while
using the system. 1CB functions must be available to an
administrator to allow updates to the data base in such a way that
the new information is faithfully represented to the user
authentication mechanism.

4.2.3,2 Audit and Surveillance. Audit facilities capture and
securely record significant events in the system, including
potential protection violations, and provide functions to access and
review the data. Surveillance facilities allow for real-time
inspection of system activities. Audit and surveillance mechanisms
provide an additional layer of protection. They should be
implemented as part of a TCB not only because they require access to
all activities on the system as they occur, but also sincf~ if they
are not themselves verified to be correct and complete, flagrant
violations might go undetected.

23

