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ABSTRACT 

The DoD has established a Computer Security Initiative to 
foster the wide-spread availability of trusted computer systems. 
One task of the Initiative is to establish criteria and guidelines 
for evaluating the internal protection mechanisms of computer 
systems. This report documents a proposed set of technical 
evcluation criteria. 

The information in this report is made available to stimulate 
technical discussion among industry and government. The views and 
conclusions contained in this paper are those of the author and 
should not be interpreted as necessarily representing the official 
policies, either expressed or implied, of the Department of Defense 
or the United States Government. 

iii 



Section 

1 

2 

3 

TABLE OF CONTENTS 

LIST OF ILLUSTRATIONS 

INTRODUCTION 

BACKGROUND 

OVERVIEW 

EVALUATION FACTORS 

PRIMARY FACTORS 

Policy 

Mechanism 

Assurance 

SUPPORTING FACTORS 

LEVELS OF PROTECTION 

LEVEL 0: NO PROTECTION 

LEVEL 1: LIMITED CONTROLLED SHARING 

Protection Policy 

Specific Protection Mechanisms 

Assurance 

Residual Risk 

Summary 

LEVEL 2: EXTENSIVE MANDATORY SECURITY 

Protection Policy 

Specific Protection Mechanisms 

Assurance 

Residual Risk 

Summary 

V 

Page 

viii 

1 

1 

2 

3 

3 

3 

9 

12 

17 

18 

20 

21 

21 

21 

21 

22 

22 

24 

24 

24 

25 

25 

25 



4 

TABLE OF CONTENTS (Continued) 

LEVEL 3: STRUCTURED PROTECTION MECHANISM 

Protection Policy 

Specific Protection Mechanism 

Assurance 

Residual Risk 

Sunnnary 

LEVEL 4: DESIGN CORRESPONDENCE 

Protection Policy 

Specific Protection Mechanisms 

Assurance 

Residual Risk 

Summary 

LEVEL 5: IMPLEMENTATION CORRESPONDENCE 

Protection Policy 

Specific Protection Mechanisms 

Assurance 

Residual Risk 

Summary 

LEVEL 6: OBJECT CODE ANALYSIS 

Protection Policy 

Specific Protection Mechanisms 

Assurance 

Residual Risk 

Summary 

CONCLUSION 

vi 

27 

27 

27 

27 

28 

28 

30 

30 

30 

30 

31 

31 

33 

33 

33 

33 

34 

34 

36 

36 

36 

36 

37 

37 

39 



REFERENCES 

DISTRIBUTION LIST 

TABLE OF CONTENTS (Concluded) 

vii 

41 

43 



Figure 

1 

2 

3 

4 

5 

6 

7 

8 

9 

LIST OF ILLUSTRATIONS 

Factors of Trusted Operating Systems 

Access Control vs. Flow Control 

Correspondence Chain 

Level 1: Limited Controlled Sharing 

Level 2: 

Level 3: 

Level 4: 

Level 5: 

Level 6: 

Extensive Mandatory Security 

Structured Protection Mechanism 

Design Correspondence 

Implementation Correspondence 

Object Code Analysis 

viii 

Page 

4 

6 

16 

23 

26 

29 

32 

35 

38 



SECTION 1 

INTRODUCTION 

Trusted computer systems are operating systems capable of 
preventing users from accessing more information than that to which 
they are authorized. Such systems are in great demand as more 
processing is entrusted to computers while less information should 
be shared by all the system's users. With this demand comes a need 
to ascertain the integrity of computer systems on the market. As 
part of the Department of Defense Computer Security Initiative [1], 
a plan has been devised for this purpose. Under this plan, computer 
systems will undergo "laboratory evaluations," where their 
suitability for different types of operational environments can be 
analyzed. A proposed set of evaluation criteria to be used in such 
an analysis is documented in this report. 

BACKGROUND 

In multi-user systems, the underlying assumption has been that 
malicious users or their programs may attempt to access information 
to which they would not normally be entitled. Operating systems* 
can potentially confine users so that unauthorized access cannot 
occur. On the other hand, if incorrectly implemented, they have the 
potential to undermine any safeguards that might have been built 
into user programs or applications. By examining the strengths and 
weaknesses of a computer's operating system, one can draw 
conclusions about the suitability of the system for diverse 
environments (characterized, for instance, by degree of data 
sensitivity, criticality of functions, user community). Thus, the 
stronger the operating system, the less vulnerable the system to 
malicious attack. 

A synopsis of the general computer security problem as well as 
the seminal work on evaluation criteria is reported by Lee et al. 
[1]. The reader is referred to that report for a historical 
perspective. The work that led to this report entailed fleshing out 
the details of an initial set of evaluation criteria presented in 
that document [1]. Specifically, the task was to: 

*"Operating system" has also been referred to variously as execu­
tive, monitor, and supervisor. As used here, it includes the 
underlying hard,ware base in addition to software. 



1. Identify the protection-related aspects of operating 
systems--not only the protection services but also .the 
proof that the services are sufficient; 

2. Determine their relative importance; 

3. Establish thresholds that clearly distinguish the level of 
an operating system by the quality of its protection; and 

4. Determine the environments that operating systems at each 
level could support. 

OVERVIEW 

This report will cover the first three points, by identifying 
the features of computer systems that contribute to internal 
protection,* and from them devising criteria for system evaluation. 
The fourth point is discussed by Lee et al. [1]. 

The protection-related features fall into three categories: 
policy, mechanism, and assurance. Policies provide the access rules 
under which the system is expected to operate. Mechanisms provide 
the foundation for policy enforcement. Assurances offer evidence 
that the mechanisms operate correctly. 

The criteria are presented for seven hierarchical "levels of 
protection"--the intent is that the higher the level, the greater 
the system's protection. With the present state of technology, no 
one can claim absolute confidence in a computer's controls. 
Hardware limitations, the complexity of software, and the 
uncertainty of an environment all increase the likelihood of errors. 
The evaluation criteria described here attempt to address the known 
vulnerabilities of computer systems. These criteria are ~xpected to 
grow and mature with our increasing understanding of computer 
protection. 

*The protection of information in computer systems is commonly re­
ferred to as "data security." 
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SECTION 2 

EVALUATION FACTORS 

Many factors play a role in the perceived quality of internal 
protection of computer systems. Three general areas will be 
considered: 

1. Protection policy, 

2. Mechanisms contributing to effective enforcement of the 
policy, and 

3. Assurances that the mechanisms are indeed functioning. 

The various aspects of policy, mechanism, and assurance, and their 
relationship to each other, are depicted in figure 1. 

PRIMARY FACTORS 

Policy 

Commitment to a protection policy is a prerequisite for a 
secure system. Without a clear statement of policy there is no way 
to determine if the system will meet even minimum requirements. In 
this section we review the basic elements of protection policy. 

A protection policy outlines a set of guidelines for 
determining how computer resources in general and information in 
particular may be shared. The policy is presented in terms of 
well-defined rules that conform to some notion of "access"--by whom, 
to what, under what conditions, and how. Another way to define a 
protection policy is in terms of service: a protection policy 
prescribes the manner and conditions under which a subject (e.g., 
user, process) is served by the system. If we view the computer 
system as an abstract, high-level machine, the services are 
operations to the system, equivalent to high-level machine 
instructions. The system determines, based on the policy, whether 
or not to perform the operation. It might allow a user to log in, 
execute a program, access an I/O device, or halt the machine. The 
conditions for performing the service may depend upon a 
characteristic (or state) of the subject or an object (e.g., files, 
tapes) involved in the service, upon the state of the system (e.g., 
number of users logged in) , or upon some external factor (e.g., time 
of day). 
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If the service involves an information, or data, object (e.g., 
files, I/0 devices) the policy will be referred to as a data policy. 
A data policy prescribes the manner and conditions under which a 
subject interacts with a data object. The manner of interaction 
defines operations on the objects. Examples are: read a file, 
.access an I/0 device, update a file, or change the owner of a file. 
The operations may concern either the contents of the object (as in 
read a file) or the state of the object (as in change the owner). 
Two distinct but significant aspects of data policy are recognized 
[2,3]: access control and flow control. Access control relates to 
the manipulation of objects as containers of information (e.g., 
reading a file); flow control addresses how the contents of the 
objects may be passed from one object to another (e.g., copying a 
file). The conditions of a data policy specify either access 
control or the more restrictive flow control. The distinction 
between access and flow is depicted in figure 2. 

If a service affects the "manner and conditions" of service, 
the policy will be called an authorization policy. An authorization 
policy prescribes the manner and conditions under which subjects may 
set authorizations for a given subject and object. For instance, 
there may be an authorization policy that allows the owner of an 
object to grant others access to that object. 

An authorization policy may be characterized by degree of 
locality of control: a mandatory policy is externally pre­
determined (e.g., by law); a discretionary policy implies individual 
judgment (i.e., at the "discretion" of the user). A policy can be 
both mandatory and discretionary if authorizations may only be 
changed within preset limits. 

Three specific policies that factor into an evaluation are: 

1. A policy on information compromise (security policy); 

2. The policy practiced within the Department of Defense and 
in the intelligence community (DoD policy); and 

3. A policy regarding denial of service conditions. 

Security Policy 

A security policy is a data policy on reading system objects. 
As such, it is specifically concerned with unauthorized disclosure 
of information. 

A mandatory security policy is one in which the ability to read 
objects is administratively controlled. For instance, users might 
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be assigned labels dependent on their titles (e.g., a personnel 
manager), and then only be allowed read access to the object if they 
have the appropriate title. 

Discretionary security policies tend to be more flexible, as 
shown in the owner ·example above. 

The nature of a security compromise will depend on the data 
policy. An access control violation occurs when the system is 
unable to prevent data from being directly read by unauthorized 
users. A flow control violation occurs when the system cannot 
prevent information from being channeled from its original data 
object into one that can be read directly by an unauthorized user. 

Note that the major threat addressed by this policy is 
compromise, or unauthorized disclosure, not sabotage--unauthorized 
modification (which probably occurs because those in the pe~ple­
paper world assume all classified information is available elsewhere 
in triplicate). Sabotage has been described as an "integrity" 
problem, and is discussed by Biba [4]. 

DoD Policy 

While laws concerning protection policies in computer systems 
throughout most of the Federal Government and in the commercial 
world are being debated, specific policies already exist within the 
national security community (DoD and the intelligence agencies), and 
indeed have even been unambiguously (i.e., mathematically) stated, 
or "modeled," so that conformance to the policies by computer 
systems can be more readily determined [5]. 

The DoD policy on data protection in automatic data processing 
systems is a mandatory security policy that follows strict 
guidelines for the handling of classified papers ([6], [7], [8]). 
Here the concern is on the dissemination of information--individuals 
should only be allowed to access the information for which they are 
cleared and have a "need-to-know." The clearance level (also called 
security level) includes a designation (i.e., Unclassified, 
Confidential, SECRET, TOP SECRET) and a number of special access 
categories, which form a partial ordering. Information is similarly 
labeled. When multi-level information is to be processed 
concurrently in a computer system, the data policy stipulates that 
in general: 

1. A subject can read a data object only if the subject has a 
security level greater than or equal to that of the object; 
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2. A subject can write a data object only if the subject has a 
security level equal to that of the object. This condition 
is necessary to enforce a flow policy that would prevent 
information from being copied into a place (object) 
accessible by a subject with a lower security level. 

In addition to the access and flow controls specific to data 
protection, a requirement exists for the auditing of protection­
related events (described later in the document), and for the 
generation of labels on printed output stating the security level of 
the data. 

• Denial of Service 

A denial of service condition results when a user is prevented 
from receiving the services to which he or she is entitled. It can 
be caused unintentionally if the operating system has a bug or if a 
user unknowingly introduces a bug into the system. It can be caused 
intentionally if the system was not designed to handle denial of 
service or if a malicious user introduces a bug into the system. 
For example, a user may be prevented from acquiring long-term 
storage space because it has been deliberately depleted, or 
execution time may be denied because the system "crashes." 
Alternatively, a user may be thwarted by more direct interference, 
such as having files deleted or modified in undesirable ways. A 
more insidious denial of service activity occurs when a malicious 
program masquerades as the normal service and causes a user to 
unknowingly reveal private information. (The masquerader might in 
addition perform the expected service, and thereby remain 
undetected . ) 

In order to counter the most general denial of service threat, 
the entire system must always operate correctly--applications 
software as well as any utility assistance from the operating system 
can never make mistakes or cause errors that will hamper the user 
from completing the task at hand. Because techniques for verifying 
the correctness of arbitrary programs are not yet available, 
addressing the general denial of service threat will be exceedingly 
difficult. However, an operating system should be able to defend 
against attacks involving resource exhaustion and masquerading. For 
instance, the protection policy might specify, "A subject can only 
create new objects if a system-maintained quota for the subject is 
not spent." Thus, if the quota is exhausted, the subject will be 
unable to exhaust another user's resources. 

8 



Mechanism 

"Mechanism" refers to the features 
together enforce the protection policy. 
computer system may include algorithms, 
hardware. To be effective they must be 
self-protecting. 

of a computer system that 
These features of the 

data bases, and protection 
complete, correct, and 

Nibaldi [9] describes an approach to building a computer system 
to maximize the likelihood that the resulting system is faithful to 
the policy. The approach requires identifying all protection­
related functions, segregating them from the rest of the computer 
system functions, and then isolating them to prevent tampering. The 
result is called a "Trusted Computing Base" (TCB). It is a 
consequence of computer security research that culminated in 
security kernel technology [10). As the protection-critical portion 
of the operating system, it should be completely able to mediate 
access to services independently of other software, and above all, 
be verifiable. 

It must be noted that a TCB is defined as hardware (including 
firmware and microcode) as well as software. A number of hardware 
features have been identified that not only allow simpler software 
(potentially easing verification), but also expedite access 
mediation such as virtual segmented memory, capabilities, and user 
I/O. Hardware mechanisms are discussed by Tangney [11). 

Four categories of protection mechanisms are considered: 
prevention mechanisms, detection mechanisms, recovery mechanisms, 
and mechanisms to support operations and maintenance. 

Prevention 

Prevention mechanisms actively work to implement the policy and 
prevent breaches. The following areas are of particular importance: 

Data protection refers to the mechanisms that directly 
implement the relevant data (both access and flow) and authorization 
policies. 

System integrity refers to the ability of the operating system 
or TCB to maintain its own integrity by protecting itself from 
tampering. It includes the ability to protect users from each other 
by providing virtual environments. 

Denial of service mechanisms act to prevent denial of service 
attacks through the operating system. 
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Authentication mechanisms are needed so the system can 
reference the appropriate authorizations.* This area also includes 
mechanisms that allow subjects to authenticate that they are dealing 
with the system (as opposed to a masquerader), with specific 
objects, and with other subjects. 

Confinement describes a condition of subjects in virtual 
isolation from other subjects and objects on the system. First 
identified by Lampson [12], confinement channels occur when the 
system resources are being shared. The reason they occur is that 
the operating system can signal information that is a direct result 
of resource utilization. If such "leakage" channels are nbt 
controlled, programs may use them to pass information in 
unauthorized ways, violating flow policy. 

Two methods of passing information in this way are "storage"· 
channels end "timing" channels. Storage channels involve shared 
control variables that can be influenced by a sender and read by a 
receiver, for instance when the information that the system disk is 
full is sent to a process trying to create a file. Timing channels 
also involve the use of resources, but here the exchange medium is 
time. For example, modulation of scheduling time can be used to 
pass information. 

Storage channels can be detected using design verification· 
techniques; timing channels are not easily detected because they 
depend on complex interactions of system and processes. 

Detection 

Detection mechanisms are passive policy enforcement devices. 
While the prevention mechanisms attempt to intercept potential 
violations, detection mechanisms monitor system activities, often 
maintaining records to aid in damage assessment, limitation, and 
recovery. Examples of detection mechanisms are time-of-use stamps, 
alarms, and audit trails. 

It has been argued that if a policy violation can be detected, 
it might also be prevented. However, the detection mechanisms may 

*The viability of the user authentication technique (e.g., pass­
words, fingerprints) may be difficult to measure. It is clear that 
if a password approach is used, the method for secreting passwords 
on the system (e.g., encryption) could be faulty and negate the ap­
proach. The method for judging the authentication approach will 
remain subjective until techniques for such calibration are 
developed. 
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include only very simple journaling programs that have no logic 
whatsoever regarding the significance of the events they record. 
Conceivably, certain violations could only be recognized after the 
fact, through complex logical and statistical analyses. 

The primary modes of detection are auditing and surveillance. 

Auditing is the practice of keeping records of system 
activities that have a bearing on the security of the system. Such 
activities include users logging in and out, the granting and 
revoking of access rights, and access violations, both attempted and 
successful (e.g., suspicious use of a storage channel). In order to 
monitor such activities, the system must be: 

1. Designed so that critical actions are identifiable, and 

2. Instrumented to follow these occurrences without seriously 
hampering the normal activities of the system. 

To be effective, the detection apparatus (mechanisms and audit logs) 
must be secured, just as any other objects in the system. They 
would otherwise be a target for a penetrator trying to cover his 
tracks. 

Surveillance is the active monitoring of the activities on the 
system in real-time. Surveillance facilities are especially useful 
to personnel in charge of security. 

Recovery 

Recovery mechanisms apply to the system components dedicated to 
restoring the secure state of the system in the event of an 
unexpected fault. Fault conditions may be induced by software 
(e.g., malicious user program) or hardware (failed component). 

Software recovery may be impossible in some cases, for example, 
when a secret file has been read by an uncleared user. In such a 
case, there is no way to recover the compromised information. At 
best the software can recover a secure state in which other such 
violations would be prevented. However, where unauthorized 
modification is involved, the system software may provide backup 
capability. 

Hardware recovery encompasses the broad area of fault tolerance 
and fault recovery. Fault tolerance implies that a system can 
sustain some amount of failure without propagating errors. The use 
of error correcting codes to negate the effects of one-bit errors in 
memory is one example of fault tolerance. Fault recovery extends 
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the fault tolerance concept to the restoration of the system in the 
event of more extensive failures. 

There is no known way of building the many components of a 
computer system so they will always work. It is more reasonable to 
assume that the system components will fail over some period of 
time. Consequently, provisions must be made to counter the effects 
of such a loss. 

Simple detection of an erroneous situation is considerably more 
straightforward than the subsequent identification and isolation of 
the failed component for replacement or repair. The restart 
operation is particularly critical, because it implies some 
knowledge of the extent of error propagation which may be difficult 
to determine for every possible fault. It also implies that 
checkpoint or rollback states are preserved and are known to have 
survived the fault. 

The most successful approaches to the general fault recovery 
problem have involved a number of redundant systems both for 
diagnosing and recovering from the fault before error propagation 
sets in. Methods of memory fault recovery might include, in the 
software area, diagnostic programs, cross checking programs (e.g., 
data base checksums), and subverter programs (which deliberately 
commit memory access violations to test access hardware). 

Avizienis discusses fault recovery in more detail [13]. 

Operations and Maintenance 

The operational and maintenance aspects fall in both the 
mechanism and assurance categories because they consist of 
procedures and programs that interplay to maintain the secure state 
of the system. This category includes startup, backup and restore, 
and configuration management procedures. Also included here are 
utilities for system control, such as initiating and changing 
authorizations, and setting quotas. 

Assurance 

Assurance features measure the degree of confidence that can be 
placed in the protection mechanisms, both hardware and software. 
Assurance can be legitimately gained through testing, but only after 
a system has been built. Yet while complete, exhaustive testing is 
possible for fairly small systems, it may be difficult, if not 
impossible, to determine if an arbitrarily large and complex 
operating system has been completely checked through the test 
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process. As Dijkstra has noted [14], tests are only useful in 
determining the presence, not the absence, of bugs. 

It is now accepted that care taken in the design and 
implementation of the system will increase one's confidence in that 
system. Also, developments in program verification will allow even 
greater assurance. In particular, in the TCB approach the formal 
methods can be applied to the TCB alone. If it indeed contains all 
protection-relevant functionality, correct design and implementation 
of the TCB provides an effective protection basis on which to build 
the remaining software in the system. 

Automated aids facilitate the development and validation of 
operating systems by performing tasks with potentially fewer errors, 
at a faster rate, and with greater ease than a human could perform 
manually. Consequently, the use of such tools on a system will tend 
to heighten confidence in the system. Editors, compilers, and 
debuggers, for instance, are today considered absolutely necessary 
to the program development process. Automation is expanding in the 
validation area to include test case generation, automatic testing, 
and program verification. It must be emphasized that the advantage 
of automated tools lies in their support to a developer, not merely 
in their existence, unless the tool itself can be validated. 
Particularly in the case of testing and verification, the output of 
the tools should be "human-readable," to allow independent 
confirmation of the results. 

Design 

Certain elements of program design foster programs that not 
only lend themselves readily to testing, but also support eventual 
program verification. Among those elements are: 

1. Top-down design, and 

2. Design specifications. 

Top~down design (also known as hierarchical design and stepwise 
refinement [15]) requires first, identifying major functions, ~nd 
second, proceeding to identify the lesser functions that support the 
major ones. At each step, one specifies input, processing, and 
output, while avoiding implementation details. Top-down design 
forces one to carefully consider the implications of major design 
decisions at an early stage. 

In such an approach it becomes useful to have graphical 
pictures of the levels, and a formal approach to documenting the 
interfaces between levels. A number of methodologies exist that 
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incorporate special graphic techniques and formal. design languages 
for recording design decisions in very precise specifications ([16], 
[17], [18]. See especially [16]). 

Design specifications provide a high-level view of the behavior 
of.the system. The top level specifications for an operating system 
or a TCB describe the user interface--what is visible to expand 
operating system or TCB software external to the TCB (i.e., the 
behavior of the high-level machine). If the top level 
specifications are written in a formal mathematical language, they 
may be syntactically and semantically checked~ and an~lyzed for 
conformance to policy. 

Lower level specifications aid top-down design by describing 
subsequent layers of abstract machine. Lower level specifications 
thereby facilitate the coding process and support program 
verification. 

Implementation 

The coding process can in itself increase the assurance level 
if clarity and readability of the programs is stressed. A 
beneficial side effect is more easily maintained programs. Top-down 
design and design specifications provide a medium for facilitating 
program implementation. 

Three aspects of program implementation are noteworthy: 

1. Modularity, 

2. Abstract typing, and 

3. Structured programming. 

A modular program is one in which any logical portion can be 
changed without affecting the rest of the design. By keeping the 
modules fairly small (on the order of a printed page), they can be 
easier to write and debug; easier to maintain and change; and easier 
for a manager to control. But modular programming requires extra 
work, discipline, and may possibly cost more CPU time and memory 
space. 

Modularity goes hand in hand with top-down design because the 
design may be structured in a hierarchy of modules--those at a 
higher level draw functionality from the modules at the next lower 
level. 
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Abstract typing is a concept that also draws on the module 
approach. A system may be designed such that the logic involving a 
particular type of object (e.g., I/0) is isolated in a special 
module with distinct interfaces. If other modules must manipulate 
an object of that type (in this case, an I/0 device), they must 
invoke the appropriate type handler module. Implementation details 
can be hidden in a module; if they must be changed at some later 
time, the effect on the rest of the system will be minimized. 

Structured programming is a philosophy of constructing programs 
in such a way that their logic is easily followed. It includes the 
concept of modularity, but also well-structured branching and 
control statements. In structured programs, all processing must 
consist of straight-line statements or function calls (where 
functions have a single entry and exit point), if-then-else 
statements, and looping constructs. (Extensions have been proposed, 
such as case statements, subroutines with multiple entries and 
exits, and restricted "goto.") Other aspects of structured 
programming are block structures with nesting for readability; 
maintenance of local variables that are never accessed from outside 
the module; and non-self-modifying code. 

For the required constructs to be employed, they must be 
supported by the programming language. It would be difficult for 
assembly languages to support a structured programming style, 
although examples do exist, but many high-level languages can and 
do; e.g., Gypsy [18], Pascal [19], Modula [20], and Euclid [21]. 

One of Dijkstra's original objectives was that "mechanical 
proofs might be easier for a program expressed in some structured 
form" [15], referring to the machine-processable format that 
structured programs present. Verification systems currently under 
development in fact depend on these characteristics of programs, and 
may restrict the programmer even more by, for example, forcing 
proper type matching and eliminating pointers. • 

Verification 

At present it is possible to verify a design (described in a 
formal top level specification) by showing that it corresponds to a 
security model of DoD policy (this has been done manually for a 
small system, and verification facilities are under development that 
will treat larger ones automatically). It is also possible for 
implementations of small programs (in suitable, axiomatized 
programming languages) to be verified against their design 
specifications. The program is thus shown to implement the policy. 
The correspondence chain implied here is shown in figure 3. 
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Design verification has taken two forms: invariant and flow 
analysis. A proof of invariants shows that certain conditions hold, 
ie., as state transitions are made. Invariant analysis can be used 
to detect access control violations. Flow analysis detects if 
illegal information flows may occur with the design, i.e., if flow 
control violations may occur. Both invariant analysis and flow 
analysis are discussed by Millen [22]. 

Implementation verification demonstrates that a program is 
consistent with its design. For instance, assertions on the states 
of variables at specific points in the program are shown to hold for 
all possible inputs. The logic involved in implementation 
correspondence proofs is very direct. The problems arise in the 
enormous amount of processing required for even simple proofs. 
Also, not all programming conditions can be checked. A notable 
example is concurrency--dealing with multiprocessing and 
simultaneous events. A number of trustworthy operating systems are 
currently being planned and built to be processed by verification 
facilities. 

Testing 

Testing methods in general attempt to show that the expected 
events occur when expected inputs are presented. Exhaustive testing 
seeks to show that all possible events are handled, i.e., expected. 
The philosophy has often been that the user will not try to misuse 
the system by attempting unexpected operations. Penetration 
analyses test for flaws in the system that could be used to 
circumvent the protection controls. Penetrations were performed 
successfully in the early 1970s to demonstrate the seriousness of 
the computer security problem [10] and will continue to be used in 
the future. Test procedures are detailed by Yourdon [15]. 

SUPPORTING FACTORS 

Factors which support the protection mechanisms by making them 
more amenable to users include human interface (how difficult it is 
to use the facilities), granularity of protected objects (defining 
the smallest or largest unit the system will protect), system sizing 
(amount of storage, number of terminals, etc., available to users), 
and computational speed (response time). These tend to be factors 
of functionality rather than of protection, but they nevertheless 
add a significant dimension to the evaluation criteria. It is 
expected that systems which fall within each level will be judged 
suitable for a given application based on such supporting factors. 
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SECTION 3 

LEVELS OF PROTECTION 

The evaluation factors have been configured into seven levels, 
each of which identifies an increased degree of internal protection. 
The detailed descriptions include the technical, observable features 
of operating systems upon which an evaluation could be based. To 
summarize briefly: 

$ At level 0, there is no basis for confidence in the ~ystem'~ 
ability to protect information. 

$ At level 1, recognition of some attempt to control access is 
given, but only limited confidence in the viability of the 
controls is indicated. 

$ At level 2, minimal requirements on the protection policy 
must be satisfied; assurance is derived primarily from 
attention to protection during system design and extensive 
testing. 

$ At level 3, additional confidence is gained through 
methodical ·construction of the protection-related software 
components of the operating system (i.e., the TCB 
implementation), and modern programming techniques; 

$ At level 4, formal methods are employed to verify the design 
of the TCB implementation. 

$ At level 5, formal methods are employed to verify the 
software implementation of the design. 

$ At level 6, object code is analyzed and the hardware support 
is strengthened. 

The levels of protection are ordered such that a system ranked 
at one level also qualifies for a lower level. For example, a level 
3 system would be at least as strong as a level 2 system. Even 
though a system may exhibit elements from several different levels, 
it will be evaluated at the highest level for which it satisfies all 
the requirements. 
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In a number of instances a level might be attained in more than 
one way. For example, a design verification need not follow a specific 
methodology deemed appropriate; a comparable methodology will be equally 
as effective. 
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LEVEL O: NO PROTECTION 

A level O designation implies null capability, and would 
initially be applied to all unevaluated systems. In many instances 
of older operating systems, there are no, or only incomplete, 
provisions for protecting information from unauthorized access. 
Even the most general form of access control, limited access to the 
operating system via user-id and password, may not be required by 
the system. Where it is assumed that the environment in which the 
system runs is "benign," the lack of even minimal precautions is 
understandable. For example, even though a diverse collection of 
users might operate on the system (such as on a computer used for 
research projects at a university), users would not be expected to 
have malicious intent. As a consequence, the system is at most 
designed to protect against gross carelessness (e.g., in writing a 
file tagged read-only), not against a determined subverter (who 
might change the tag, then write). 

In summary, there is no assurance that the system can restrict 
users to some subset of the total information and services 
available. A level O categorization indicates there is no evidence 
that the system will adequately protect information. 
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LEVEL 1: LIMITED CONTROLLED SHARING 

The level 1 evaluation is a recognition of the presence of 
credible data access controls capable of providing minimal 
protection. Designers have seriously begun to address the problems 
of controlled information sharing in some more recently developed 
time-sharing operating systems. 

Protection Policy 

A protection policy of enforcing access control to data objects 
is expected at this level. Protection policies will likely follow 
the discretionary model--individuals are allowed to reference the 
information objects only in certain ways, which may be determined by 
labels or tags associated with both subjects and objects. The 
policy may also include algorithms for determining when a user can 
change the authorizations to a given object. 

Specific Protection Mechanisms 

The specific mechanisms which enforce the protection policy 
provide operating system protection (isolation) and user virtual 
spaces. Mechanisms to enforce a data policy on access control are 
provided. System access is gained through specific login subsystems 
that require a user attribute (e.g., finger print) or information 
only an authorized user should have (e.g., password). 

No special protection-related detection requirements are made 
on systems at this level; however, as a performance or economic 
measure, accounting subsystems may measure the activity on the 
system. 

No special fault-tolerant hardware is assumed. However, 
software diagnostics should attempt to detect errors that could hurt 
the system either by making it temporarily unavailable 
(inaccessible) for repair, or by destroying information stored on 
primary and secondary storage media. Backup and restore utilities 
and procedures exist for recovering file systems in the event of a 
fault. 

Assurance 

No particular standards for the operating system development 
are required at this level, although it is expected that what has 
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been loosely referred to as "best commercial practice," or "good 
engineering practice," is followed. Confidence in the system is 
measured by code inspections and by the results of "industry­
standard testing" (general debugging and tests of functionality). 

Residual Risk 

A level 1 system is only assumed to allow reasonable access 
control. Consequently, the flow control required by DoD policy may 
be non-existent. The operating system cannot be assumed to protect 
information on the basis of labeling; hence, either this cannot be a 
prerequisite or the application must provide the labeling capability 
from the protection that is provided by the operating system. Even 
this must be done with care since the operating system is capable of 
negating controls in the applications. 

Summary 

Although protection is not of major importance to the design, 
the system does have some limited means of controlling access. 
Testing is the only means by which the protection mechanisms are 
validated. The essential elements of level 1 systems are listed in 
figure 4. It is likely that many commercially available operating 
systems released within the last few years would be categorized at 
this level. 

22 



N 
l.,..) 

POLICY 

Some form of 
discretionary or 
mandatory protection 

MECHANISM 

• PREVENTION 

Data Protection 
Access Control 

System Integrity 
Isolated operating 

system 
Per-process virtual 

environment 

Authentication 
System/user (login) 

• DETECTION 

• RECOVERY - HARDWARE 

Software Fault Detection 
Diagnostics 

• OPERATIONS/MAINTENANCE 

Backup/Recovery 

Figure 4 

Level 1: Limited Controlled Sharing 

ASSURANCE 

•DESIGN 

Good Engineering 
Practices 

•IMPLEMENTATION 

Inspections 

•VERIFICATION 

•TESTING 

Production Testing 
Debugging 
Functional Testing 



LEVEL 2: EXTENSIVE MANDATORY SECURITY 

The concern at level 2 is that the protection policy 
accommodate extensive mandatory security. Within the computer 
system, this means that 

1. Authorizations to read data can be administratively 
controlled; 

2. Flow controls prevent the data from being compromised; and 

3. The integrity of the data can be maintained through write 
access controls. 

The national security community has applications in which 
mandatory security is essential if more than one clearance level of 
user, or more than one level of data classification, may be present 
on the system at one time. Due to operational necessity, this can 
often be the case. At this level, in addition to s~tisfying the 
requirements of levels 0 and 1, the operating system acts in 
accordance with DoD policy. 

Protection Policy 

The system .should support mandatory security control over and 
above any discretionary authorization policies. 

Specific Protection Mechanisms 

The specific protection mechanisms which foster an operating 
system of this level contribute to the enforcement of the protection 
policy and to the prevention of certain classes of denial of service 
attacks. Typically, in order to enforce the mandatory policy stored 
on computer systems, users, their processes, and information objects 
are labeled appropriately by the operating system. These labels 
must be protected across operating system actions. 

Denial of service is addressed by implementing some form of 
"time-slice" scheduling policy, preventing any one user or program 
from effectively locking out all others from the CPU. Denial of 
service by the operating system is also accomplished if any 
user/process action can cause the system to "crash;" the possibility 
of such actions occurring should be minimized. The masquerading 
problem is addressed by mechanisms allowing the user to authenticate 
the system (e.g., by killing all currently active processes and 
initiating a new login). 
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Protection should be extended to consideration for information 
after it leaves the confines of the computer system: printouts, 
punched cards, and other forms of output must be labeled 
appropriately. 

Specific protection-oriented actions will be audited, or 
recorded, in order that suspicious and incriminating actions might 
be detected--even if not prevented. Specifically, violations, 
output production, time of accessr and time of login/logout-should 
be recorded. 

Fault detection in hardware should focus on protection-related 
hardware mechanisms (e.g., by using the software subverter 
epproach). 

Assurance 

Confidence in the system is spurred by the techniques used to­
develop the system, namely modern programming practices. Structured 
programming techniques promote the writing of understandable code-­
code which is consequently more easily debugged. However, extensive 
testing is relied on for assurance. Penetration testing--testing in 
which attempts are made to exploit errors in the system and subvert 
the policy--is extensive. 

Residual Risk 

Although extensively tested, a level 2 system is still subject 
to design and coding errors. Testing should detect any obvious 
flaws; yet subtle ones might linger, to the advantage of untrusted 
users who are in a position to exploit them. 

Summary 

Level 2 systems support a mandatory security policy. Some 
attention is given to preventing denial of service by the operating 
system, and there is an attempt to audit, or record, certain 
protection-related events. Extensive testing, including penetration 
analyses, are relied on for assurance. A few systems modified for 
high-integrity DoD applications are expected to fall in this 
category. The essential elements of level 2 systems are listed in 
figure 5. 
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LEVEL 3: STRUCTURED PROTECTION MECHANISM 

·It is at level 3 that the focus on high integrity protection 
mechanisms intensifies. At level 2, confidence that the mechanisms 
implement the protection policy is derived from careful adherence to 
methodological approaches to developing the protection-related 
functions of the operating system. 

The hardware and software that perform these functions comprise 
a trusted computing base (TCB). The TCB has direct responsibility 
for the protection of the system. Not only is the TCB to be more 
carefully designed and implemented with respect to protection, it is 
not dependent on other software, and can protect itself from 
tampering. (The functionality required here has been documented by 
the author [9].) 

Mechanisms that attempt to provide the protection needed for 
safe information sharing are built directly into the system, rather 
than added onto it. 

Protection Policy 

There is no change in policy from level 2. 

Specific Protection Mechanisms 

The specific protection mechanisms that contribute to a level 3 
system all relate to clearly identifying and isolating the TCB of 
the system that will have the responsibility for enforcing the 
protection policies. Key to this ideal are mechanisms that permit 
complete mediation of all accesses to information objects, and 
isolation of the TCB itself for protection. The hardware, for 
example, may provide for segmented memory and specific protection on 
each segment. The TCB need only control the setting of protection 
modes, and the hardware will automatically check for invalid 
accesses. This kind of protection could, of course, also apply to 
the TCB code and data, providing the necessary isolation. 

Assurance 

By appropriately structuring the software that implements the 
protection features of a system, one can achieve more easily 
designed, coded, debugged, and maintained software. The 
methodologies that aid software development employ top-down design, 
abstract types, and structured programming in a high-level language. 
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Visibility into the design is gained by top-level 
specifications, providing a high-level descripti~n of the external 
interface to the TCB. Such a description of the external behavior 
of the TCB aids the testing process by delineating specific test 
cases. The kinds of testing required for level 2 acceptance will 
still be necessary here. 

Residual Risk 

Level 3 systems, by their construction, may invite greater 
confidence than level 2 systems. However, the testing process is 
still the mein source of assurance; consequently, level 3 systems 
carry the same type of residual risk as is found in level 2 systems. 

Summary 

Protection is extremely important to the design of level 3 
systems. Protection mechanisms are identified, isolated, and made 
independent of other software, allowing for ease of informal 
verification and analysis. Assurances go beyond testing because 
there is a methodological and structured approach to the design of 
the software involved in protection. But testing is. still the 
primary means of assurance. The testing process is, however, aided 
by high-level descriptions of the user interface (e.g., top level 
specifications). The essential elements of level 3 systems are 
listed in figure 6. 
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LEVEL 4: DESIGN CORRESPONDENCE 

The main distinction to be made for systems at this level is 
that formal methods are employed to confirm trustworthiness from the 
design. At this level, mathematical proofs of correspondence of the 
design to a security policy, represented by a security model, are 
required. 

Protection Policy 

There is no change in protection policy requirements from 
level 3. 

Specific Protection Mech2nisms 

A specific requirement of the system is that it be able to 
audit the use of storage channels. These channels might be detected 
as a result of the formal verification techniques or by penetration 
analysis; however, they may not be easily removed without affecting 
the system in an adverse way. By imposing restrictions on the way 
resources are being shared, the system may no longer be allowed to 
use an optimal algorithm for resource utilization. The use of such 
channels can be detected with auditing mechanisms, and the 
i.nformation obtained from the auditing mechanisms can be analyzed 
later to find the source and seriousness of the channels' 
exploitation. 

Hardware failures become increasingly more critical at level 4 
as more confidence can be gained from the software implementation. 
At this level, it is required that the system be able to crash 
"softly"--restart (at some checkpoint loc~tion) with data in a 
consistent state--in the face of hardware errors, with support for 
recovery. 

Assurance 

Whereas the mechanisms used to enforce ehe protection policy 
may be addressed even in level 3 systems, additional assurance is 
sought at level 4. The additional assurance is that which comes 
from the completeness advantages of mathematically supported design 
verification. At level 3, insight into the overall design should be 
provided by top-level specifications of the external interfaces. At 
level 4, the specifications are required to be in a form that proves 
the design corresponds to an accepted security model. Both 
invariant and flow analyses are required. 
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However, a "correct design" does not imply a correct 
implementation. The source and machine code must be verified to 
correspond to the design as described in the specification (either 
through compiler verification or by some other means) for complete 
assurance. This form of verification will only be required at 
higher levels. 

Even with formal design verification, functional testing is 
still needed. In addition to that required at previous levels, test 
cases are also required and are obtained from the specifications. 

Configuration management becomes especially important at this 
level because the verified specification is expected to correspond 
to the implemented design. Changes should be controlled and 
audited. Also, because of the likelihood that requirements on the 
system may change, reverification procedures must be established. 
These might well be an extension of normal configuration management 
procedures. 

Residual Risk 

By undergoing rigorous design verification, level 4 systems are 
less likely to suffer from subtle design errors that may result in 
information flow through covert leakage channels. However, that the 
design is correctly implemented is not guaranteed. 

Summary 

Assurances extend to proofs of design-to-model correspondence 
through formal verification, showing that the design obeys an 
approved model of DoD policy. All identified leakage channels are 
audited. A number of systems under development for DoD are expected 
to fall into this category. The essential elements of level 4 
systems are listed in figure 7. 

31 

.., . 
'.• 



I.,.) 
N 

POLICY 

Discretionary 

Mandatory Security 

Denial of Service 

MECHANISM 

• PREVENTION 

• •DETECTION 

Audit Logging 
Leakage Channels 

•RECOVERY - HARDWARE 

H/W Fault Tolerance 
Limited operations 

•OPERATIONS /MAINTENANCE 

Configuration Management 
Reverification 

Figure 7 

Level 4: Design Correspondence 

ASSURANCE 

• DESIGN 

Formal, top level 
specifications (TLS) 

• IMPLEMENTATION 

• VERIFICATION 

Design-to-model proof 
Flow analysis 
Invariants 

• TESTING 

Test Case Generation 
From TLS 



LEVEL 5: IMPLEMENTATION CORRESPONDENCE 

In level 5 systems, the implemented system must be shown to 
formally correspond to the verified top-level design. Also at this 
level, more stringent requirements for denial of service provisions, 
hardware fault tolerance, and leakage channel control are demanded. 

Protection Policy 

Additional policy matters to be considered involve the denial 
of service aspects--those involving the right of authorized users to 
an equitable share of all the resources of the system, not just the 
use of the CPU. No formal model of denial of service protection for 
the consideration of formal verification exists. Validation of 
conformance to policy in that respect must come about through 
extensive testing. 

Specific Protection Mechanisms 

The prevention of extensive exploitation of the covert leakage 
channels must be provided at this level. In particular, storage and 
timing channels, identified through design verification and testing, 
must be narrowed to limits that conform to the perceived threat. 
The exploitation of any known channels should be monitored through 
the use of on-line, real-time, surveillance tools. 

Space resources (e.g., based on priority) are equitably 
allocated at this level. 

Hardware-supplied backup systems and redundant circuits aid the 
fault-tolerance required·of the hardware at this level. The 
unpredictability of hardware failures and the potential results 
necessitate the support that can be gained in addition to software. 

Assurance 

The importance of this level rests soundly on the proof of 
implementation, shown either by direct correspondence to a security 
model (in which case the design embodied in the implementation would 
be shown to correspond), or by correspondence to a design previously 
shown to correspond to the security model. 

Proofs of correspondence, while possible to produce manually, 
may be automated, at least for fairly simple programs. However, 
proof of a code-to-design correspondence, even for simple programs, 
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requires the specification of the system in more detail than a top­
level specification might show. The provision of lower level 
specifications may be necessary as intermediate steps to the proof 
process. In addition, the source programs must be written in•a 
language suitable for verification, and, at present, assertions must 
be added. 

Penetration analyses are focused on identifying information 
leakage channels (such as timing channels) that might not be 
addressed by verification. 

As yet, no control of the compilation phases has been required, 
although visual inspection of generated source and assembly code 
should satisfy one that no "trap doors" or "Trojan horses" have been 
implanted to circumvent the verified protection controls. 

Residual Risk 

Level 5 systems have the advantage of extensive program 
verification. At this stage, software ceases to be a weakness of 
the system. Hardware becomes more of a threat, even with extensive 
fault tolerance capability. 

~ummary 

At this level, the state-of-the-art (and somewhat beyond) in 
computer security is brought to bear on the development of the 
protection-related software. Verification extends not only to 
proofs of correspondence of design to model but also to proofs that 
the implementation faithfully carries out the design. At this 
level, stringent requirements are made on the hardware (through 
backup systems) to decrease the probability of security breach due 
to hardware failure. All identified leakage channels are narrowed 
to tolerable limits. The essential elements of level 5 systems are 
listed in figure 7. 

34 



w 
\J1 

POLICY 

Denial of Service 

MECHANISM 

•PREVENTION 

Denial of Service 
Space Quotas 

Collusion 
Timing channels bandwidth­

limited 
Storage channels bandwidth­

limited 

•DETECTION 

Real-time surveillance tools 

•RECOVERY - HARDWARE 

H/W Fault Recovery 
Backup systems 

•OPERATIONS/MAINTENANCE 

Figure 8 

ASSURANCE. 

• DESIGN 

Low level specifications (LLS) 

• IMPLEMENTATION 

Verifiable Implementation 
Strongly typed language 
Assertions 

• VERIFICATION 

Code-to-design proofs 

• TESTING 

Test Case Generation 
From LLS 

Penetration analyses 
Timing channels 

Level 5: Implementation Correspondence 



LEVEL 6: OBJECT CODE ANALYSIS 

At this, the final currently defined stage, the last measure of 
reassurance is provided in the form of an analysis of compiler 
output, ie., object code. A proof of correspondence of object code 
to security model is indicated, (and thus satisfies the verification 
requirements for levels 4 and 5). • However, a check of generated 
machine code against source code verified to correspond to a proven 
design would suffice. 

Hardware requirements tighten here, too, as· the probability of 
failure shifts from software to hardware. Although the impact of 
hardware fault should be softened as the result of provisions made 
at lower protection levels, formal approaches to understanding the 
behavior of hardware must be attempted here. 

Protection Policy 

No change to the operative protection policy is necessary at 
this level. Assurances that the system behaves in conformance with 
the protection policy is now .extended to the object code and 
hardware. 

Specific Protection Mechanisms 

At this stage, the emphasis is on hardware mechanisms, for the 
software has undergone extensive verification. Fault handling must 
move from fault detection and fault tolerance to fault recovery. 

Assurance 

Assurance gained at this level comes from the careful analysis 
of the generated object code. That this code fulfills the 
requirements of the security model is one aspect that must be 
ascertained. 

In addition, the bare machine must be more carefully verified 
if it is to support the programs that are also so thoroughly 
verified. This kind of understanding comes from interface 
specifications of the hardware, as is done for the TCB, from which 
formal statements can be made about the behavior of the security­
relevant hardware under certain circumstances (e.g., changes in 
physical environment). Test case generation should follow from the 
hardware interface specifications. 
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Residual Risk 

Level 6 systems offer a degree of confidence which is only 
imaginable from today's technology. Any threats at this level would 
be a result of highly improbable hardware errors, or, more likely, a 
failure in the personnel, administrative, physical, or 
communications security provisions. 

Summary 

At level 6, formal analysis of the object code produced by the 
compiler is required. Axiomatization of the underlying hardware 
base, and formal verification of the security-relevant hardware 
mechanisms, are also required. It is recognized, however, that 
these requirements are beyond the anticipated state-of-the-art of 
verification in the 1980s. The essential elements of level 6 
systems are listed in figure 8. 
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SECTION 4 

CONCLUSION 

The sheer volume or criticality of applications that run on 
computer systems now, and of those that will run in the coming 
decade, necessitate careful attention to protection-related issues 
in the design of operating systems. Systems that purport to handle 
such information transactions will be more in demand; consequently, 
a means of determining their acceptability will be required. This 
report documents criteria for the evaluation of operating systems in 
which a TCB methodically designed, implemented, and verified ranks 
highly. The reason for this is, of course, the recognition that ad 
hoc techniques of system development, no matter how cleverly 
implemented, cannot offer the assurance of methodical confirmation 
of the implementation. 

The criteria, as stated, attempt to cover all known threats and 
the approaches to combating them. To allow the criteria to 
accommodate innovation, and to remain flexible in the face of 
change, certain precautions have been taken in the establishment of 
these criteria. Care has been taken to avoid specifying the mode or 
vehicle of implementation (e.g., hardware or software). Instead, 
attention has been focused on functionality--what must be 
accomplished to combat an abridgement of the relevant protection 
policy. Due to the ordering of protection levels as the 
requirements are made more stringent, responses to newly perceived 
threats may be added as additional levels. 
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